Response to:

Regulation of property conditions in the rental market
Issues Paper
Residential Tenancies Act Review

August 2016

Prepared by:
The Chase and Tyler Foundation
www.chaseandtyler.org.au
info@chaseandtyler.org.au
Contents

Executive Summary ................................................................................................................................................. 3
The deaths of Chase and Tyler Robinson ................................................................................................................ 3
Carbon Monoxide ................................................................................................................................................... 4
Gas Safety Strategy ................................................................................................................................................. 4
Objectives of the Chase and Tyler Foundation ....................................................................................................... 5
Proposal .................................................................................................................................................................. 5
Recommendation 1 ............................................................................................................................................. 5
   Gas appliance inspections and servicing ........................................................................................................ 5
Recommendation 2 ............................................................................................................................................. 5
   Gas Safety Checklist Record ............................................................................................................................ 5
Recommendation 3 ............................................................................................................................................. 6
   Installation of battery operated carbon monoxide alarms ............................................................................. 6
Recommendation 4 ............................................................................................................................................. 6
   Adherence to Regulations and Codes and retrofitting of ventilation appliances ........................................... 6
Conclusion ............................................................................................................................................................... 7
Executive Summary
The Chase and Tyler Foundation welcomes this important review and the opportunity to make a submission on behalf of Victorian tenants and urges Consumer Affairs Victoria to support the recommendations contained in this submission.

The Directors of the Chase and Tyler Foundation advocates that there should be a minimum standard before a property can be released onto the rental market, as well as ongoing safety checks and servicing. Investing in a property is a business decision and landlords should be obligated to all the same laws and legislation as providing employees with a safe place to work.

Our message is simple – Landlords have a duty of care to provide safe secure housing, as it is a fundamental human right.

The deaths of Chase and Tyler Robinson
On a cold evening on the 29th May in 2010, Chase 8, Tyler 6 and their mother Vanessa went to bed with the gas heater kept on low in the family lounge room to keep the house warm. Their mother was roused disorientated and severely unwell the following evening around 6:00 pm - a full day had been lost. Chase and Tyler had died throughout the night from carbon monoxide (CO) poisoning, whilst their mother was admitted to hospital for acute exposure for a month and a half.

The killer? A gas heater, due to the lack of servicing, which created CO which spilled throughout the home in deadly levels.

The death of Chase and Tyler highlighted that there was little to no knowledge within the Australian community regarding the requirement of regular ongoing maintenance to gas and fuel burning appliances, appropriate ventilations requirements when running these appliances and knowledge about CO poisoning. Also identified trades within the energy building, medical and emergency sector, also had little knowledge when it came to regular servicing of gas and fuel appliances and diagnosing CO and identifying associated risks.

Further investigations by Gas Technology Services (a trading division of Vipac Engineers and Scientists Limited) and the Australian Gas Association on the gas wall furnace within the rental property of Vanessa, Chase, and Tyler Robinson. It was found to have a thick layer of soot build-up within the heat exchanger and the presence of foreign matter, such as dust or carpet lint which partially wholesly blocked the main burner primary air opening, reducing the amount of air in the primary supply and disturbed the ratio of air to gas, thereby producing CO.

By using the same external weather conditions as per the night of the incident and the operation of two extraction fans within the rental property, the presence of CO within the bedrooms was recorded at 800 parts per million. It was hypothesised that had that scenario continued, after around three hours the concentration may well have exceeded 1000 ppm.

Table 1. Levels of COHb and clinical manifestations

<table>
<thead>
<tr>
<th>CONCENTRATION (%)</th>
<th>SYMPTOMS AND EXPOSURE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 ppm (0.0035)</td>
<td>Headache and dizziness in 6 to 8 hours of constant exposure</td>
</tr>
<tr>
<td>100 ppm (0.01)</td>
<td>Slight headache in 2 to 3 hours</td>
</tr>
<tr>
<td>200 ppm (0.02)</td>
<td>Slight headache, loss of judgment in 2 to 3 hours</td>
</tr>
<tr>
<td>400 ppm (0.04)</td>
<td>Frontal headache in 1 to 2 hours</td>
</tr>
<tr>
<td>800 ppm (0.08)</td>
<td>Dizziness, nausea, and convulsions in 45 min; unresponsive within 2 hours.</td>
</tr>
<tr>
<td>1,600 ppm (0.16)</td>
<td>Headache, tachycardia, dizziness, and nausea in 20 minutes; death in less than 2 hours.</td>
</tr>
<tr>
<td>3,200 ppm (0.32)</td>
<td>Headache, dizziness and nausea in 5 to 10 minutes. Death within 30 minutes.</td>
</tr>
<tr>
<td>6,400 ppm (0.64)</td>
<td>Headache and dizziness in 1 to 2 minutes. Convulsions, respiratory arrest, and death in less than 20 minutes.</td>
</tr>
<tr>
<td>12,800 ppm (1.28)</td>
<td>Unconsciousness after 2 to 3 breaths. Death in less than 3 minutes.</td>
</tr>
</tbody>
</table>

1 Heffer, J – Coroner (2013) Finding into a death with inquest - Chase and Tyler Robinson.
At the inquest of Chase and Tyler, various other factors within the property identified what led to the death of Chase and Tyler, and the injury of their mother was that:

- the property had a high energy rating with little adventitious ventilation.
- the house was retrofitted with additional DIY exhaust fans, which caused a negative pressure drawing combustion products (including CO) back down the flue and spilling into the home.

Since the accident, Vanessa Robinson has worked alongside Energy Safe Victoria, appearing in domestic consumer awareness campaigns as well as Licensed and qualified gas fitters training DVD. Vanessa was also a silent partner alongside the Hon Dr. Sharman Stone who called on state and federal leaders to push for legislative changes in regards to gas safety, which the government then headed the National Gas Safety Strategy, by the Department of Resources, Energy and Tourism.

**Carbon Monoxide**

You can’t see, taste or smell CO, but at high levels it can kill a person within minutes. CO is produced when there is incomplete combustion for example when fuels such as gas, oil, coal and wood do not burn properly. In the home this is most commonly caused by appliances and flues that have been incorrectly installed, not maintained or are poorly ventilated.

There are two main categories of CO poisoning: acute, which is caused by short exposure to a high level of carbon monoxide, and chronic or sub-acute, which results from long exposure to a low level of CO. The symptoms and signs depend on the level of CO in the environment and the length of exposure, as well as the patient’s state of health.

CO poisoning is known as the great imitator for its ability to present with equivocal signs and symptoms, many of which closely resemble other diseases. In particular, patients may be misdiagnosed with viral illness, acute myocardial infarction, deteriorating cognitive ability and migraine. It is estimated that CO poisoning misdiagnosis may occur in up to 30-50 percent of CO-exposed patients presenting to emergency departments. Failing to recognise carbon monoxide poisoning may result in the return of vulnerable patients and their families to the toxic and potentially lethal environments. Patients with acute CO poisoning are more likely to present with more serious symptoms, such as cardiopulmonary problems, confusion, syncope, coma, and seizure. Chronic poisoning is generally associated with the more insidious symptoms. Low-level exposure can exacerbate angina and chronic obstructive pulmonary disease, and patients with coronary artery disease are at risk of ischemia and myocardial infarction even at low levels of CO.

In Australia, the statistics concerning the incidence of accidental CO poisoning (as opposed to suicides) are limited. The Australian Bureau of Statistics collects data concerning accidental poisoning in Australia, but does not classify these statistics into different types of poisoning. The records do not capture the number of people who are unwillingly exposed to low levels of CO poisoning; levels that may cause long-term ill health but go unrecognised and misdiagnosed. This type of CO poisoning is, by its very nature, are an unknown.

**Gas Safety Strategy**

It was established throughout the development of the Gas Safety Strategy Regulation Impact Statement (and the Quantitative Risk Analysis that preceded it) that the risk of CO poisoning is rising due to a number of factors. This includes:

- improvements to the sealing of houses, particularly in retrofitted houses;
- the installation of powerful exhaust fans in bathrooms;
- increasing gas consumption rate of some gas appliances; and
- higher energy efficiency of gas space heating appliances resulting in lower flue temperatures and less flue pull.

---

2 Heffer, J – Coroner (2013) Finding into a death with inquest - Chase and Tyler Robinson


5 Allen Consulting Group Pty Ltd (2012). The risk of carbon monoxide poisoning from domestic gas appliances - Decision Regulation Impact Statement
The principal risk identified in the QRA related to the effects of powerful exhaust fans in the development of negative pressure situations and a lack of adequate ventilation for the proper operation of gas appliances. Moreover, awareness campaigns also fail to specifically target the appliance types (also identified in the QRA) as posing the greatest the risk to the community — namely appliances with a natural draught flue. Consultations undertaken for this RIS have highlighted how little capability the public — including consumers and tradespeople involved in the building sector — has in recognising risks associated with gas appliances.

Objectives of the Chase and Tyler Foundation

The Chase and Tyler Foundation was founded in 2011, with its mission being to eliminate accidental CO poisoning throughout Australia by increased awareness, preventative measures, regulation, training and research.

Our Foundation’s main focus is to:

- Provide education & awareness initiatives to further improve gas fossil fuel safety for the public and industry throughout Australia which includes the following:
  - General Public
  - Medical Community including:
  - GP’s, Physicians, nursing staff, Emergency Departments, Ambulance officers, Australian Medical Association
  - Emergency Personal including, Firefighters and Police
  - Licensed and gas fitters and plumbers
  - Building industry
  - Real Estate/Landlords
  - Educational organisations (Primary, Secondary, TAFE and University) and childcare centers.
- Advocate to government, both (federal and state) to mandate gas appliance servicing and carbon monoxide alarms in all rental and government housing
- Advocate to, both (federal and state) to introduce mandatory Post-mortem CO testing in Australia
- Provide free CO alarms to vulnerable people throughout Australia.

Proposal

To ensure that residential premises do not expose tenants to health risk, we propose three recommendations to be included in the Tenancies Act.

Recommendation 1

Gas appliance inspections and servicing

Landlords/agents should be obliged by law to have all gas and fuel-burning appliances inspected either annually or at least bi-annually by a qualified gasfitter. This conforms with Energy Safe Victoria and manufacturers strong recommendations that appliance to be serviced at a minimum of every two years.

The current legislation concerning appliances is for them to be in ‘good repair’. This is ambiguous at best, and sees landlords who are not prepared to part with money for regular servicing or is ignorant to the dangers associated with an unserviced appliance and will overlook the upkeep, even on request. Until a legal requirement is put in place, tenants will continue to be put at risk.

By having a gas appliance serviced, it will maintain its efficiency and prolong the life of the landlord’s investment.

Recommendation 2

Gas Safety Checklist Record

All tenants should be provided with a Gas Safety Checklist Record upon new tenancy. This gives tenants an opportunity to be informed about the appliances service history as well as the next expected service timeframe.

7 Energy Safe Victoria. Rooming house gas safety checklist
Recommendation 3

**Installation of battery operated carbon monoxide alarms**

All rental properties containing gas and fuel burning appliances should have 1 – 3^4 CO alarms installed to ensure additional safety precautions in case of a sudden failure in between servicing or a sudden appliance failure.

There is much controversy with carbon monoxide alarms within Australia, where it is suggested that they give consumers a false sense of security. As we all know a smoke alarm does not prevent a fire, but it gives the occupants a warning when smoke or fire is present. A CO alarm will not stop carbon monoxide being produced, but it will give the occupants a warning if it is present in the room.

**Carbon Monoxide alarm standard**

Currently, Australia has no standard in place in regards to CO alarms, though they are widely available in hardware store and supermarkets across Australia (including many substandard models – hence the requirement for an Australian standard).

The foundation recommends the EN50291 (European) or UL2034 (US) standards, due to numerous years of rigorous testing by government and independent organisations regarding the improvement of performance and reliability.

**Location of alarm and installation**

CO alarm manufacturers suggest installing CO alarms in or near to every room that has a gas heating appliance. When selecting installation locations, make sure the alarm is audible from all sleeping areas. Alarms located in the same room as a gas heating appliance should be located as directed by the manufacturer’s installation instructions. If there is a partition in a room, the unit should be located on the same side of the partition as the gas heating appliance.

Alarms should also be installed in or near bedrooms or other rooms remote from gas heating appliances, which are normally occupied, and should be located relatively close to the breathing area of the occupants.

Recommendation 4

**Adherence to Regulations and Codes and retrofitting of ventilation appliances**

Any rental properties containing gas or fuel burning appliances should be assessed for adherence to all building, plumbing and electronic regulations and codes before being leased.

Retrofitting of ventilation appliances, such as extraction fans within properties containing gas and fuel burning appliances should legally be installed by a licensed builder, gasfitter, and electrician to reduce unsafe situations caused by DIY projects.

**Ventilation and energy efficient homes**

Houses are increasingly being retrofitted to improve energy efficiency by reducing the rate at which air is exchanged between the inside of a house and the outside environment. This air exchange results in the transfer of heat, requiring increased energy use to maintain temperatures within a dwelling. As a result, houses are increasingly being fitted with better sealing around windows and doors to reduce the rate of air exchange between inside and outside environments (i.e. preventing drafts).

Improved house sealing is producing problems on two accounts. Firstly, the reduction in the frequency of air exchanging between the internal and external environments can result in a lack of air being available for complete combustion in cases where appliances, such as natural draught space heaters, draw air for combustion from the internal environment. Prolonged operation of these appliances in confined spaces with insufficient ventilation can reduce the level of air for combustion. Well-sealed houses may not provide sufficient oxygen for combustion, resulting in the production of CO.

Increasing the air tightness of houses is often associated with the installation of extraction fans in bathrooms and other areas to remove moisture-rich air. Combining the use of powerful extraction fans with increased weather sealing can produce a negative pressure gradient between the internal and external environments. When this pressure gradient develops air will travel from the higher-pressure external environment into the...
lower pressure environment inside the house. When this situation develops often air is drawn into the house down the flue of a natural draught open flued gas appliance. When this occurs the airflow of the flue is reversed, resulting in the spillage of combustion products into the internal environment. This is called adverse flow.

**Conclusion**

Since 2010, there has been a heightened awareness of the need to service and maintain gas heaters due to the death of Chase and Tyler Robinson and the combined CO awareness campaigns of Energy Safe Victoria and the Chase and Tyler Foundation. Thousands of dangerous gas appliances operating throughout Victorian were found to be producing high levels of carbon monoxide. Six years after the campaigning, this sis still prevalent. Dangerous appliances like these generally go undetected until a licensed gasfitter conducts an inspection and service, or condemns the gas appliance completely. During the time frame of the spillage and the incident being resolved, irreparable damage can occur to community members’ health, not to mention the potential of death.

Currently if a gasfitter finds unsafe CO levels being produced by a gas heater, there is no compulsory reporting requirement to authorities. This means that government officials are not getting a true reflection on the continued health and safety risks our community members are facing.

Until we see regulation changes relating to mandatory servicing of gas and fuel burning appliances in rental properties, tenants will literally be risking their lives.