Overview

1. Role of the Urban Design Strategy
2. Delivering the Vision
3. Submissions - key issues relating to Urban Design Strategy & proposed responses
4. 3d modelling development outcomes (detailed testing)
1. Role of the Urban Design Strategy

Fishermans Bend Vision, 2016

Establishes a clear overall vision for Fishermans Bend and outlines the preferred character for each precinct.

Urban Design Strategy, 2017

Identifies:
- 6 urban design objectives to achieve the Vision
- Further detail on preferred precinct character
- Density and built form controls to achieve the design objectives

The draft Fishermans Bend Framework, 2017

GC81 Amendment 2017
3. Delivering the Vision

- ‘... an unparalleled renewal opportunity’
- ‘A benchmark for sustainable and resilient urban transformation...’
- ‘Melbourne is Australia’s fastest growing city and is set to become Australia’s biggest. Fishermans Bend will support this growth - providing 60,000 job and a range of well-serviced, higher density housing options for 80,000 people’
- ‘Fishermans Bend will play a vital role in securing new high value jobs for Victoria, building on its legacy of world-leading technology and innovation’
- ‘Heritage and culture will be celebrated and are integral to generating a collection of diverse, mixed use places...’
3. Delivering the Vision

The Vision outlines the role and preferred character of each precinct:

‘Fishermans Bend will build on Melbourne’s legacy of good planning and design, and will support a range of medium and higher density built form...

The scale of Fishermans Bend is an opportunity to influence positive changes in the Victorian higher density apartment market...’

Fishermans Bend Vision: The Next Chapter in Melbourne’s Growth Story, DELWP, September 2016, p8
3. Delivering the Vision

- Significant transformation from current uses - unlike the CBD and other inner city urban renewal areas, almost every site is expected to be redeveloped
- In the Hoddle Grid the highly-valued diverse character has been realised through ongoing subdivision and incremental redevelopment over 180 years
3. Delivering the Vision

- In Fishermans Bend development will be much faster paced (75% of sites by 2050) and include the redevelopment of multiple sites that are larger than whole CBD blocks.
- The majority of sites are in private ownership - the planning controls must provide sufficient guidance so that the Vision can be realised.
- The proposed controls are designed to orchestrate diversity, enable site specific design responses and deliver good levels of private and public amenity.
4. Submissions & proposed responses

Key Themes:

- Land use mix
- Suitability of the proposed density controls
- Suitability of the proposed built form controls
- Application of the controls
Land use mix

Issue 3.1*
Controls don’t support a market-based response to land use (minimum commercial FAR not supported) and Controls won’t deliver job targets (minimum commercial FAR should be mandatory)

Discussion
- Importance of Fishermans Bend for economic growth of city
- Conversion of residential to commercial highly unlikely
- Needs to support mixed-use developments (impacts sustainable transport patterns)
- Sandridge is the most important commercial area
- Current policy drafting is too weak

Recommendations
1. Improve policy wording (as per marked up policy)
2. Monitor provision of commercial floor area - convert to mandatory if required
3. Update the Urban Design Strategy to remove commercial floor area as potential FAU

* Numbers refer to Urban Design Expert Evidence report
Land use mix

Issue 3.2
Core area boundaries should be revised in Montague and Wirraway

Discussion
- Core area boundaries are informed by the Vision, the public transport proposals and existing context
- Further assessment of Montague lead to refinement of boundary to acknowledge sites in immediate proximity to public transport that have minimum development constraints
- Wirraway boundary is defined by the properties immediately fronting the proposed tram line.

Recommendations
4. Expand the boundary of the core area in Montague *
5. No changes to the Wirraway core area boundary

* This will require a recalculation of the FAR controls in Montague
Land use mix

Figure 2: Analysis of site constraints in Montague and revised changes proposed to the Montague core area (Expert Witness Report, p23)
Suitability of proposed density controls

Issue 4.1
Population targets too low and Population targets are too high

Discussion
- 80,000 target in place since 2013
- Original Urban Design Strategy scope to deliver the targets
- Urban Design Strategy also assessed their suitability
- Deemed suitable as:
 - Focused on 2050, not total capacity
 - Aligns with projected rate of growth
 - Aligns with Vision and preferred precinct character areas - supports diversity
 - Aligned with infrastructure planning
 - Considers overarching neighbourhood scale impacts
Suitability of proposed density controls

Discussion

- Use of FAU would need to be carefully monitored to manage overall rates of population growth
- Aligns with other central city planning for Melbourne and international benchmarks

Recommendation

6. No change required.

Figure 9: Residential densities for comparable inner city precincts and current development trends in Fishermans Bend (Urban Design Strategy. p18)
Suitability of proposed density controls

Issue 4.2
FARs are too low and misaligned with development potential

Discussion
- FARs are directly aligned with population projections. The Gross Floor Area required to accommodate 80,000 residents and 40,000 workers determines the proposed FARs.
- FARs have been increased by 133% to acknowledge that all sites are unlikely to redevelop by 2050.
- FARs aligned with similar urban renewal areas in Australian context.
- FARs generally work within the proposed height limits.
- FARs work on a range of site sizes to deliver density, diversity and support space between buildings on large sites.
- FARs support diverse development outcomes and design flexibility.
Base FAR controls high in the Australian context

Figure 41: Range of base FAR controls in place in comparable central city precincts in Australia (Urban Design Strategy, p83)
Impact of same FAR on varying site sizes

Figure 6: Illustrative model demonstrating the difference between a FAR of 4:1 applied to a small site (above) and a larger site (below) where the need to deliver new streets, lanes and open space influences the overall height of buildings on site (Expert Witness Report, p32)
Supporting design diversity on individual sites

Figure 15: An alternative design outcome for the block bounded by Lorimer Street, Ingles Street and Rogers Street. In this example all sites are also modelled to the proposed FAR of 5.4 and in compliance with the built envelope controls (including overshadowing requirements for the new park). This demonstrates a variety of potential design responses that are possible within the proposed controls.

Figure 16: Potential design outcomes for the block bounded by Lorimer Street, Ingles Street and Rogers Street. In this example all sites are also modelled to the proposed FAR of 5.4. This example shows the benefit of the discretionary height controls where across some of these sites an additional 1-4 storeys has been incorporated as it allows for an even greater diversity of design response while meeting the minimum setback, building separation and overshadowing requirements.
Supporting design diversity across precincts

Figure 6: Lorimer perspective view: In this illustration all sites are also modelled to the proposed FAR of 5.4 and in compliance with the built envelope controls (including overshadowing requirements). This demonstrates a variety of potential design responses that are possible within the proposed controls. (Addenda 2, p11)
Suitability of proposed density controls

Issue 4.2
FARs are too low and misaligned with development potential

Recommendation
No change to overall approach of establishing and applying FARs paired with height controls

7. Revise the FAR settings in Montague due to change of core area boundary. Increase maximum FARs in Montague core and non-core areas and decrease maximum FARs in the Sandridge core.

- Montague Core - increased from 6.1:1 to 6.3:1
- Montague Non-Core - increased from 3.0:1 to 3.6:1
- Sandridge Core - decreased from 8.1:1 to 7.4:1
Suitability of proposed density controls

Issue 4.3

Dwelling densities proposed are too restrictive and 3 bedroom targets are too onerous

Discussion

- Housing diversity is critical to fostering diverse communities
- Policy includes both dwelling density target and bedroom mix targets effectively using two different methods to achieve the same outcome
- The FARs together with the height limits already support diverse housing typologies
- Supporting adaptable building design enables a more market-based response e.g. conversion of 2 x 1 bedroom apartments to a 3 bedroom apartment

Recommendations

8. Remove dwelling density targets
9. Retain policy target for min. 3 bedroom mix - set at threshold of 100 dwellings within a development not 300.
Suitability of proposed built form controls

Issue 5.1
Building heights are too low and constrain development potential

Discussion
• FARs set development potential not building heights
• Building heights align with preferred character outcomes
• Current building heights are mandatory. Proposed building heights are discretionary.
• Some height limits have increased while others have decreased.
• Of 92 tested sites, the modelling demonstrates that 6 sites would exceed the preferred height limit in order to deliver the total FAR. This is based on assumption that they are a mixed use development.
• Of these, one site at 123 Montague Street exceeds the height limit across the whole site.

Recommendation
10. Increase building height on 123 Montague Street to 18 storeys
Figure 9: Montague perspective view (from north-east): In this illustration all sites are also modelled to the proposed FAR of 6.3 (core area) and 3.6 (non-core area) and in compliance with the built envelope controls (including overshadowing requirements). This demonstrates a variety of potential design responses that are possible within the proposed controls (Addenda 2, p14)
Figure 8: Sandridge perspective view (from the south): In this illustration all sites are also modelled to the proposed FAR of 7.4 (core area) and 3.3 (non-core area) and in compliance with the built envelope controls (including overshadowing requirements). This demonstrates a variety of potential design responses that are possible within the proposed controls, including the delivery of family-friendly housing (mid-rise buildings with communal open space in the non-core area) [Addenda 2, p13]
Suitability of proposed built form controls

Issue 5.2
Mandatory 4 storey height limit not supported and reduction in mandatory height limit along Boundary Road in one location not supported

Discussion
- Extent of area where a 4 storey mandatory control is in place has been reduced from current controls
- 3d testing illustrates proposed depth (of approx. 50 metres) provides appropriate transition to low-scale areas to the south
- Reduction of extent of 4 storey area on Boundary Street too narrow north of Gladstone Street

Recommendation
11. Increase the 4 storey discretionary height limit within Wirraway to 6 storey discretionary
12. Increase the extent of the 4 storey mandatory control along Boundary Road, north or Gladstone Street to the eastern property boundary of 190 Gladstone Street
13. Nominate a dimension for the extent of the 4 storey areas
Suitability of proposed built form controls

Issue 5.3
Mandatory controls not supported

Discussion

• Mandatory controls currently apply across the whole area. Proposed mix of mandatory and discretionary controls support greater diversity of design responses, housing diversity and improve opportunities to redevelop narrow sites

• Side and rear setbacks critical to deliver public and private amenity and development equity

• Better Apartment Design Standards identifies need for designating side and rear setbacks that is context specific

• Proposed side and rear setback controls adapted from NSW Apartment Design Guidelines (15 years of tested use including recent comprehensive review)

• All sites will redevelop - certainty of outcomes is the priority

• 3d testing demonstrates mandatory provisions do not constrain development capacity with the exception of mandatory 15.4m high street wall to streets 12m or less and laneways
Summary of existing and proposed controls

<table>
<thead>
<tr>
<th>Current controls</th>
<th>Proposed controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory maximum height limits - vary 4 -40 storeys</td>
<td>Mandatory 4 storey areas only (reduced in extent)</td>
</tr>
<tr>
<td></td>
<td>Range of discretionary height limits - 4-24 storeys + unlimited height areas</td>
</tr>
<tr>
<td>Mandatory maximum street wall height of 20 metres</td>
<td>Street wall heights vary to respond to street width (mandatory)</td>
</tr>
<tr>
<td></td>
<td>Increase in maximum street wall height to 30 metres (mandatory)</td>
</tr>
<tr>
<td>Mandatory minimum upper level setbacks above the street wall of 10 metres from all boundaries</td>
<td>Upper level street setbacks reduced to 3 metres for building up to 30 metres (8 storeys)</td>
</tr>
<tr>
<td></td>
<td>Upper level street setbacks reduced to 5 metres for building up to 68 metres</td>
</tr>
<tr>
<td></td>
<td>Upper level street setback of 10 metre remains in place for buildings taller than 68 metres</td>
</tr>
<tr>
<td></td>
<td>Greater flexibility in side and rear setbacks above the street wall that relate to building height and use (range 5-10 metres)</td>
</tr>
<tr>
<td></td>
<td>Introduction of side and rear setbacks for mid-rise buildings</td>
</tr>
<tr>
<td>Minimum tower separation of 20 metres</td>
<td>Tower separation for buildings up to 68 metres reduced to 10 metres (between non-habitable uses) and 15 metres (between habitable and non-habitable uses)</td>
</tr>
<tr>
<td></td>
<td>Minimum tower separation of 20 metres for building over 68 metres high</td>
</tr>
</tbody>
</table>
Suitability of proposed built form controls

Issue 5.3
Mandatory controls not supported

Recommendations

14. Revise current maximum street wall heights on laneways and streets 12 metres or less from a mandatory maximum of 15.4 metres to a preferred maximum of 15.4 metres and a mandatory maximum of 23 metres.

15. Retain the mandatory FAR, street wall height, setback controls and building separation controls within the exception of recommendation above.
Suitability of proposed built form controls

Issue 5.4
Over-shadowing controls are too onerous

Discussion

• Discretionary overshadowing controls generally result in overshadowing of parks (findings of C270 review)
• The quality of park spaces becomes even more important as densities increase (more people using these spaces). Sunlight is critical to the enjoyment of parks
• C270 highlighted importance of winter sunlight to maximise human comfort levels in coldest months
• 3d testing has highlighted need for minor revisions to overshadowing controls and height controls is required

Recommendations

16. Revise overshadowing controls in Montague to allow overshadowing by the street wall
17. Update Urban Design Strategy to reflect this change
18. Revise the height limit on 11 Montague Street from 24 to 12 storeys
Overshadowing controls tested and confirmed for every park

Figure 6: Wirraway perspective view - the application of the FAR together with all proposed building envelope controls support the delivery of the open space without loss of development yield on any site (Addenda 3, p10)
Suitability of proposed built form controls

Issue 5.5
Building heights are too high

Discussion
- The building heights are aligned with the Vision
- The building heights support the delivery of sunlight to open spaces and nominated streets (Plummer and Fennell Streets)

Recommendation
19. Retain building heights as proposed with exceptions noted in Recommendations 10, 11, 12 and 18
Suitability of proposed built form controls

Issue 5.6
No guidance is provided for street wall heights for development fronting parks

Discussion
• This is a gap that needs to be addressed
• 3D modelling demonstrates that a street wall height of 4-6 storeys is appropriate

Recommendation
20. Introduce a preferred street wall height of 15.4 metres to a 23 metres in locations where development sites immediately front a park.
Application of the controls

Issue 6.1
Application of two height controls and/or two FAR controls on one site is confusing

Discussion
- Application of multiple controls on large sites is not unusual within Melbourne’s central city
- Alignment of core/non-core areas generally follow property boundaries where possible
- This issue raised in C270 with no recommendation to change the approach
- Clarity on the extent of each control within sites would assist

Recommendation
21. No changes to proposed controls
22. Provide clear dimensions within the Amendment to demarcate the boundary between two FAR/height controls
Application of the controls

Discussion

• The application of multiple controls on development sites is not unusual in high density, mixed-use environments
• Application of FAR and building envelope controls very common
• The pairing of the FAR with building envelope controls is deliberate central to delivering the Fishermans Bend Vision
• The revised Part A versions of the controls significantly improve their legibility

Recommendation

23. Retain the current suite of controls
Application of the controls

Issue 6.3
Intersection of two different street wall heights

Discussion

• There is currently no clarity on which street wall height applies on corner sites that front two different street widths
• Preferred urban design outcome is to provide greater definition to corner sites so the higher street wall height should apply

Recommendation

24. Stipulate in the DDOs that the higher street wall height should apply in these circumstances. This should not extend more than 30 metres along the narrower street/laneway frontage
Application of the controls

Issue 6.4 Laneway locations

Discussion

• The 3d testing has identified that a degree of flexibility for preferred laneway locations enables more site specific design responses and greater flexibility in the location of commercial or residential land uses

• The local policy provides sufficient guidance on the frequency and preferred locations of new laneways

Recommendation

25. Update the Urban Design Strategy to include principles for establishing new laneway locations

26. Update the local policy to change the current guidance on the location of laneways within core areas from 50 metres to approximately 50-70 metres in one direction
4. 3d modelling development outcomes

Assumptions

- All sites have been modelled to include the recommendations within my expert witness report.
- All other controls have been modelled as per the revised version of the Amendment included in Appendix C of my Expert Witness Evidence Report.
- The yield in each tested site has an accuracy of -0.1 to +0.2 FAR from the nominated FAR.
- Residential towers have been modelled using the following assumptions:
 - A maximum building depth for residential towers of 26m in at least one direction (e.g. 26 x 50 metres is acceptable).
 - A minimum tower depth of 12 metres and minimum tower floorplate of 600 metres (does not apply for buildings 10 storeys and under).
 - A maximum residential tower floorplate of 1,500m2.
- Commercial towers have been modelled up to 2,000m2.
- Car parking is assumed to be above ground, however, car park layout and numbers have not been assessed.